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Abstract—Over the past few years, the field of adversarial
attack received numerous attention from various researchers with
the help of successful attack success rate against well-known
deep neural networks that were acknowledged to achieve high
classification ability in various tasks. However, majority of the ex-
periments were completed under a single model, which we believe
it may not be an ideal case in a real-life situation. In this paper,
we introduce a novel federated adversarial training method for
smart home face recognition, named FLATS, where we observed
some interesting findings that may not be easily noticed in a
traditional adversarial attack to federated learning experiments.
By applying different variations to the hyperparameters, we have
spotted that our method can make the global model to be robust
given a starving federated environment. Our code can be found
on https://github.com/jcroh0508/FLATS.

Index Terms—adversarial attack, robustness, federated learn-
ing, smart home, face recognition

I. INTRODUCTION

The introduction of Deep Neural Networks (DNNs) to the
field of machine learning grasped the attention of numerous
researchers by achieving the classification ability to almost
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Fig. 1. General Architecture of FLATS
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Adversarial Attack

Adversarial Examples input data with an imperceptible change

Adversarial Examples = Original data (x) + Perturbation with noise (€)

Adversarial Attack induce misclassification in purpose to make machine learning models more ROBUST

Original Data Perturbation Adversarial Data
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Real-Life Adversarial Attack (Smart Home)
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Adversarial Noise
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Adversarial Defense (Training)

ATTACK (Step 1) DEFENSE (Step 2)
Input +
Clean Data Adversarial Examples
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Explaining and Harnessing Adversarial Examples (2015)
lan.J.Goodfellow, Jonathon Shlens & Christian Szegedy

° ° +.007 x
FGSM (Fast Gradient Sign Method)
- sign(V=J (6, z,y)) esign(V:;L(O,m,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al. 2014

® Gradient Descent Algorithm ® Fast Gradient Sign Method (FGSM)
OPPOSITE direction of the gradient of the cost function SAME direction of the gradient of the cost function
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Explaining and Harnessing Adversarial Examples (2015)
lan.J.Goodfellow, Jonathon Shlens & Christian Szegedy

FGSM (Cont.)

+.007 x =
]
i x +
x sign(VaJ(6, . y)) esign(VaJ(0,x,y))
“panda” “nematode™ “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al. 2014

x + €-sign(V,J(8,x,v))

Loss Function

Loss Function Gradient

Adversarial Example




Explaining and Harnessing Adversarial Examples (2015)
lan.J.Goodfellow, Jonathon Shlens & Christian Szegedy

FGSM (Cont.)
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Explaining and Harnessing Adversarial Examples (2015)
lan.J.Goodfellow, Jonathon Shlens & Christian Szegedy

Deciding perturbation

FGSM uses the “max norm constraint”:

(In all definitions, x = (%1, X1, ..., X))

n
L*” distance: || x |l = max | ;] L! distance: || x Il,= Z |x; |
T i=1

L : moving many pixels as possible but only by a small number

L1 : summed absolute value difference between x and x°




Explaining and Harnessing Adversarial Examples (2015)
lan.J.Goodfellow, Jonathon Shlens & Christian Szegedy

Adversarial Defense (FGSM)

JO,x,y)=a-J(0,x,y)+ (1 —a) J(6,%y)

(3) (1) (2)

(1) j(@) X, y) : loss function of the original data

(2) ](9, f, y) : loss function of the adversarial example

(3) ](9, X, y) : loss function of both original data and adversarial example

Q : proportion of applying loss between original data and adversarial example



Fast is better than free: Revisiting adversarial training (ICLR2020)
E. Wong, L. Rice, and J. Z. Kolter

Fast Adversarial Training using FGSM (FFGSM)

Efficient training techniques added to FGSM

FAST IS BETTER THAN FREE: Method Standard accuracy PGD (e = 8/255) Time (min)
REVISITING ADVERSARIAL TRAINING FGSM + DAWNBench
+ zero init 85.18% 0.00% 12.37
Eric Wong* Leslie Rice* + early stopping 71.14% 38.86% 7.89
Camegie Mllon Unerty Carmesie Mllon Unvergy + previous init 86.02% 42.37% 1221
Pilllshurgh, PA 15213, USA Pittsl?urgh, PA 15213, USA + random init 85.32% 44.01% 12.33
ericwong@cs.cmu.edu larice@cs.cmu.edu i = 10/255 step size 83.81% 46.06% 12.17
J. Zico Kolter + o = 16/255 step size 86.05% 0.00% 12.06
gompu_terl\jclilenc;D_epan_memd + early stopping 70.93% 40.38% 8.81
arnegie cllon myerslty an ]
Bosch Cente for Arifical Intlligence “Free” (m = 8) (Shafahi et al| 2019 85.96% 46.33% 785
zkolter@cs.cmu.edu + DAWNBenc 78.38% 46.18% 2091
PGD-7 (Madry et al.[[2017) 87.30% 45.80% 4965.71
+ DAWNBenc 82.46% 50.69% 68.8




Square attack: a query-efficient black-box adversarial attack via random search (2020)

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein,

Square Attack (Black-Box Attack)

Key Concept of Square Attack

* Based on randomized search scheme

» Perturbation situated at boundary of feasible set

Table 2. Results of untargeted attacks on ImageNet with a limit of 10,000 queries.
For the l-attack we set the norm bound € = 0.05 and for the ls-attack ¢ = 5. Models:

. _ . _ normally trained I: Inception v3, R: ResNet-50, V: VGG-16-BN. The Square Attack
Square AttaCk' a query effiClent blaCk bOX outperforms for both threat models all other methods in terms of success rate and

advers arial att ack Via random Search query efficiency. The missing entries correspond to the results taken from the original

paper where some models were not reported

Failure rate Avg. queries Med. queries
Maksym Andriushchenko*!, Francesco Croce*?, Norm Attack ; R v Ig ; v ; ; v
. . 1 . . 2
Nicolas Flammarion”, and Matthias Hein Bandits [31] 34% 14% 2.0% 957 727 304 218 136 36
! BPFL Parsimonious [49]  1.5% - - 722 - - 237 - -
5 X . . ) DFO.-CMA 0.8% 0.0% 0.1% 630 270 219 259 143 107
University of Tiibingen *  DFO4 Diag. CMA [39] 2.3% 1.2% 0.5% 424 417 211 20 20 2

SignHunter [2] 1.0% 0.1% 0.3% 471 129 95 95 39 43
Square Attack 0.3% 0.0% 0.0% 197 73 31 24 11 1

Bandits 98% 6.8% 10.2% 1486 939 511 660 392 196
I SimBA-DCT [28]  35.5% 12.7% 7.9% 651 582 452 564 467 360
Square Attack  7.1% 0.7% 0.8% 1100 616 377 385 170 109




Federated Learning

Step 1: Train local model F
Step 2: Send parameters to global server

Global Server

Step 3: Federate all the parameters 3
Step 4: Send back the updated parameters to K " “2%  Global Model
the local devices Z 7" Wf+1 ———) 6000

k=1 ¢6 00

1 | ®**%% |Local Models ¢e¢ees Local Models ¢¢¢¢¢ |Local Models ¢¢o00s
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image source: https://proandroiddev.com/federated-learning-e79e054c33ef
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Advantages of Federated Learning

Step 1: Train local model .
Step 2: Send parameters to global server
Step 3: Federate all the parameters
Step 4: Send back the updated parameters to K P
the local devices Z ek Wk _
n ol

o0 00

k=1

0000 (X111] 0000 0000
66 o0

66 o0 o o0 o6 o0

- - = =

image source: https://proandroiddev.com/federated-learning-e79¢054c33ef

1. Data Security: local models do not have to send their private data

2. Hardware Efficiency: training only conducted within distributed local devices

3. Data Diversity: Wider range of data utilized in each training process



Federated Averaging (Fed2awvg) Algorithm

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, F is the number
of local epochs, and 7 is the learning rate.
Server executes:

initialize wq

for eachround ¢t = 1,2,... do

Wiyl E _’wt+1

m <+ max(C - K, 1)

A n Total Data Size
Sy < (random set of m clients)

for each client k£ € S; in parallel do
wy,, + ClientUpdate(k, w

K Total No. of Clients

Wi ¢ Yy Zwfy, ng Data Size of Client &

ClientUpdate(k, w): // Run on client k wa Weight of Client k at Time Step t+1

B < (split Py, into batches of size B)

for each local epoch 7 from 1 to £ do
for batch b € Bdo

Wi+1 Global Aggregated Parameter

w — w — VL (w;b)
return w to server




Face Recognition

Killing Two Birds with One Stone:
Efficient and Robust Training of Face Recognition CNNs by Partial FC

Xiang An '3 Jiankang Deng * 23 Jia Guo ?
Ziyong Feng ! XuHan Zhu * Jing Yang® Tongliang Liu’
'DeepGlint 2Huawei *InsightFace
“Peng Cheng Laboratory SUniversity of Sydney

{xiangan, ziyongfeng}@deepglint.com, tongliang.liu@sydney

{jiankangdeng, guojia, zhuxuhan.research,y.jing2016}@gmai

softmax loss

x - Wy
W, =[w* w7
pick positive . W
ol random
x w

Figure 1. PFC picks the positive center by using the label and ran-
domly selects a significantly reduced number of negative centers
to calculate partial image-to-class similarities. PFC kills two birds
(efficiency and robustness) with one stone (partial sampling).

Jiankang Deng

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

'Tmperial College London “InsightFace 3FaceSoft

{j.dengl6, n.xuel5, s.zafeiriou}@imperial.ac.uk , guojia@gmail.com
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| C.Inter-Loss:  GDis (E E) 1
D Tnplet -Loss : GDls(ﬁ -)+m<GDls(m a

} B. Intra-Loss : GDls(
\

Figure 1. Based on the centre [15] and feature [35] normalisation,
all identities are distributed on a hypersphere. To enhance intra-
class compactness and inter-class discrepancy, we consider four
kinds of Geodesic Distance (GDis) constraint. (A) Margin-Loss:
insert a geodesic distance margin between the sample and cen-
tres. (B) Intra-Loss: decrease the geodesic distance between the
sample and the corresponding centre. (C) Inter-Loss: increase the
geodesic distance between different centres. (D) Triplet-Loss: in-
sert a geodesic distance margin between triplet samples. In this
paper, we propose an Additive Angular Margin Loss (ArcFace),
which is exactly corresponded to the geodesic distance (Arc) mar-
gin penalty in (A), to enhance the discriminative power of face
recognition model. Extensive experimental results show that the
strategy of (A) is most effective.

* 123 Jia Guo * 2 Niannan Xue' Stefanos Zafeiriou'

CosFace: Large Margin Cosine Loss for Deep Face Recognition
Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Liy and Wei Liu*

Tencent Al Lab

{hawelwang, yitongwang, encorezhou, denisji, sagazhou, michaelzfli}@tencent.com

gongdihong@gmail.com wliu@ee.columbia.edu
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Figure 1. An overview of the proposed CosFace framework. In the
training phase, the discriminative face features are learned with a
large margin between different classes. In the testing phase, the
testing data is fed into CosFace to extract face features which are
later used to compute the cosine similarity score to perform face
verification and identification.
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FLATS : Federated Learning Adversarial Training for Smart Home Face Recognition System

Global Model

Nk
Global Wi E 7 Yt
Server K

* Total No. of Clients = 10
* Client ID Selected for FL=[1, 3, 9]

* Client ID for Adversarial Training = [9] .r@~:

—— : Sending weight to the global model
= : Sending maliciously trained parameter
—p : Updated weights broadcasted back to

# &=
PN

ClientID:1 ClientID:3 ClientID: 9

2 =
k)

» &
» &
» &

=
()

Client ID: 1 ClientID: 3 ClientID: 9



FLATS (Method 1)

(1) Randomly select client IDs to be

trained at each global round

(5) Fedavg
» Save “global parameter”

* Broadcast back to local devices

Al

gorithm 1 FLATS (Method I)

1

)

21:
22:
23:

24

25:

: N = Total global rounds
. J = Total no. of clients

: d = Total data size

d; = Data size of client j

n = No. of clients selected every round ) =
ne = No. of clients to go through adversarial training Guarantee for Adversarial Training in Each Global Round

wy = Global model parameter
: Clients < (w1, wa, W3, ..., W]
: RoundClients « ||

. AdvClients + ||

: for N do
UpdatedW eights < ]
:(1) RoundClients <~ Random(C'lients, n)
AdvClients < Random(RoundClients, ng)
for i « RoundClients do
@)if 7 is in AdvClients then (3) If the ID is in AdvClients:
newW <« AdvTraining(Clients[i])

» Adversarial Training

UpdatedW eights < newW
(4) | else
newW <« ClientUpdate(i, Clientsli]) (4) It not:
UpdatedW eights <—newW + Standard Training
end 1t
end for

. (5)wy + FedAvg(UpdatedW eights)
end for




FLATS (Method 2)

No Guarantee for Adversarial Training in Each Global Round

Algorithm 2 FLATS (Method II)
1: N = Total global rounds

2. J = Total no. of clients
3: d = Total data size
4: d; = Data size of client j
- i 5. n = No. of clients selected every round
= @ w3 Tt 6: n, = No. of clients to go through adversarial training
7. w, = Global model parameter
+ Total No. of Clients = 10 R :
'f S + Client ID Selected for FL=[1, 3, 9] 8 Clzents <_ [wl’ w27 w3~ 7wk]
+ Client ID for Adversarial Training = [9] 38 9: RoundClients < H
% @ @ —+ : Sending weight to the global model 10: AdvClients + H
= : Sending maliciously trained parameter
—— : Updated weights broadcasted back to . . .« .
/ﬁ‘ ﬂ /A‘ Jocal devices 11: |Adelients + Random(RoundClients, ng) | Select client IDs for Adversarial Training
12: for N do .
ClientID:1 ClientID:3  Client ID: 9 13: UpdatedWeights — H n thew

14:  RoundClients +— Random(Clients, n)
15:  for i + RoundClients do

@ % @ % @ % 16: if ¢ is in AdvClients then
17: newW < AdvTraining(Clients[i])
/ﬁ‘ ﬂ /ﬂ‘ /A{ ﬂ /ﬁ‘ 18: UpdatedW eights < fbewW
19: else
cemiort e R 20: newW < ClientUpdate(i, Clients[i])
il UpdatedW eights < newW
D2 end if

23:  end for
24w, + FedAvg(UpdatedW eights)
25: end for




Adversarial / Clean Batch Ratio

E.g. clean train batch ratio = 0.25

BATCH 75% BATCH

Clean Images

Algorithm 1 FLATS (Method 1)

ratio = int(len(train_loader) * clean_train_batch_ratio)
11: for N do

122 UpdatedW eights < ]
13:  RoundClients < Random(Clients, n)
14:  AdvClients < Random(RoundClients, n,)

if (client_id in attack_id_selected) and (idx >= ratio):

images = atk(images, labels)

15:  for i« RoundClients do
OIpREE T A AL G Switch to Adversarial Exampl o i is in Adel@en@ '-:hen . .
outs = local_model(images) AW o !’e 17: newW < AdvTraining(Clients[i])
_, preds = torch.max(outs, 1) AFTER specific “batch” ratio 18: UpdatedW eights < newW

19: else

20: newW < ClientUpdate(z, Clients[i])
loss = criterion(outs, labels) 21 UpdatedW eights <newW
loss.backward() Backpropagation 22: end if
optimizer.step() ] based on Adversarial Examples 23:  end for
local_loss += loss.item() 24:  wy < FedAvg(UpdatedW eights)

25: end for
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Starving Dataset

1. Data Size
TOTAL Client =5

print("No. of All images: len(dataset))

print("Size of fist image: ", dataset[0][0].size()) Data Size fOl' eaCh Client = around 3506 (”D)

No. of All images: 17534
Size of fist image: torch.Size([3, 224, 224])

2. Model: ResNet-34 (97.8% classification accuracy)

rack arack
obama1_627jpg obamad_710jpg obama5_720jpg obama6_726jog obama7_732jpg obama8_739jpg obama9_743jpg obamald_675jpg obama20_680jpg obama21_686.pg

d B

barack barack barack barack barack barack barack barack barack
obama22_688.pg obama24_698jpg obama25_701jpg obama26_702.jpg obama29_703ipg obama32_705.jpg obama33_706,jpg obama37_707jpg obama38_708.jpg

& B E 9

barack barack barack barack barack barack barack barack barack
obama39_709.jpg obamad0_712jpg obamad1_713jpg obamad3_714jpg obamadd_715jpg obamad5_716jpg obamad6_717jpg obamad7_718jpg obamad9_719pg

class FaceRecog(nn.Module):
def __init_ (self, num_classes, =True):
(FaceRecog, self).

self.resnet34 = models.resnet34(pretrained=True)
for param in self.resnet34.parameters():
param.requires_grad = False

2 (1

c rack barack barack barack barack barack
obama53_722pg obama55_723]pg obama56_724.pg obama57.725pg obama60_727jpg obama62_729.jpg obama63_730,jpg obamab5_731jpg

barack
obama77_737.pg obama78_738,jpg obama81_740jpg obama82_741jpg obama85_742jpg obama90_744jpg

barack

modified_fc = nn.Linear(in_features = fc_in_features, out_features=num_classes)
f.resnet34.fc = modified_fc

barack barack barack
obama71_734.jpg obama72_735]pg obama’s.

barack barack barack barack barack barack barack barack barack barack.
obamag9_746jpg obamal.._628]pg obamal.._629)pg obamal.._630jpg obamal.._631jpg obamal.._632jpg obamal.._633jpg obamal.._634]pg obamal.._635]pg obamal..._636]pg

U1 B B

barack barack barack arack barack barack barack barack
obamai21_637Jpg obamal.._638]pg obamal.._639jpg obamal.._640jpg obamal.._641jpg obamal.._642jpg obamal.._643jpg obamal.._644jpg obamal.._645]pg obamal.._646]pg

forward(self, x):
return self.resnet34(x)

summary(self, input_size):

return summary(self, input_size)




4.1 Benign Federated Learning
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Benign Federated Learning (lID)

Accuracy of the Global Model Loss of the Global Model for ecah round
80
40
70
35
60
" = 7 total clients
& 50
o 5 (71%) clients selected randomly
20
30 .
J 5 epochs per client
20
10 15 global rounds
10
2 4 6 8 10 12 1‘4 2 4 6 8 10 12 14



Adversarial Examples

pins_Keanu Reeves pins_Keanu Reeves pins_Keanu Reeves

50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

0 25 5 75 100 125 150 175 200 0 =)

Original Image FGSM (e=8/255) FFGSM (e=8/255)

pins_Keanu Reeves

pins_Keanu Reeves

pins_Keanu Reeves

50 75 100 125 150 175

0 25 5 75 100 125 150 175 200 75 100 125 150 175 200

Square (e=8/255, FGSM (€=0.9) FFGSM (e=0.9)
Ngueries = 2000)



Robust Acc. of Benign FL Model (IID)

TABLE I
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF BENIGN FEDERATED
LEARNING METHOD

Global Robust Global Clients Total Selected

Acc.(%) Acc.(%) Rounds Selected Clients Proportion (%)
81.9 N/A 7 5 5 100
82.5 6.5 10 4 5 80
79.6 6.7 10 8 10 80
732 40 10 12 15 80
i CATASTROPHIC i 786 N/A 10 3 6 50
76.1 5.0 10 4 8 50
61.5 34 10 8 16 50
Robust Acc. 2.70 2.7 10 10 20 50
--------------------------------------------------- - 71‘8 4.4 ]0 1 5 20
48.5 3.8 10 2 10 20
40.8 2.3 10 3 15 20
34.1 2.2 10 4 20 20

Adversarial Example: FGSM (e = 8/255)




Benign FL Model vs. Robust FL Model (FLATS)

TABLE 1
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF BENIGN FEDERATED
LEARNING METHOD

Global Robust Global Clients Total Selected
Acc.(%) Acc.(%) Rounds Selected Clients Proportion (%)
81.9 N/A 7 5 5 100
82.5 6.5 10 4 5 80
79.6 6.7 10 8 10 80
73.2 42 10 12 15 80
78.6 N/A 10 3 6 50
76.1 5.0 10 4 8 50
61.5 34 10 8 16 50
2.70 2.7 10 10 20 50
71.8 44 10 1 5 20
48.5 3.8 10 2 10 20
40.8 2.3 10 3 15 20
34.1 2.2 10 4 20 20

Overall Increase

in Robust Acc.

TABLE 11
GLOBAL AccC.(%) AND ROBUST AcC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255,
a=10/255)

ne® ABRY(%) Global Acc.(%) Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]

1 25 85.1 479 49.2 56.2
1 50 85.7 54.1 542 60.5
1 75 85.1 51.6 52.5 58.6
2 25 82.8 65.2 65.3 68.7
2 50 83.1 66.7 67.9 71.0
2 75 80.7 67.4 67.9 68.1
3 25 83.0 64.9 65.0 68.45
3 50 73.9 719 72.3 72.5
4 25 71.5 70.2 70.9 71.2
4 50 30.7 74.1 75.0 66.6

*nq: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

Adversarial Training: FFGSM (AlexNet, € = 8/255)




4.2 Data Manipulation (Non-IID)

1. Pixel | 2. “Eye” Cover | 3. Brightness | 4. Test Data Augmentation

30



Default Setting

Global Model
< k=
kK
Global Wil Z Tu"“
Server K

ClientID: 1 ClientID:3 ClientID: 4 Client ID: 5

* Total Clients=5
* # of Clients for Traini

* # of Clients

—— : Sending weight to the global model

= : Sending maliciously trained parameter

—— : Updated weights broadcasted back to
local devices

Client IDs
chosen in the BEGINNING

N E e
AARA

()

Client ID: 1 ClientID:3 ClientID: 4

Client ID: 5



1.1 Pixel Comparison

[ 4 b .
label: tensor(45) label: tensor(10)
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1.1 Pixel Comparison

label: tensor(45) label: tensor(10)
0 v 0
25
20
50
75 40
100 60
125
80
150
175 100
200
120

2% 50 75 00?5 I5GSSY 15 ssouh

3x224 x224 3x128 x 128



1.2 Pixel Modification

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255,
a=10/255)

ne® ABRY(%)

Global Acc.(%)

Robust Acc.(%)

label: tensor(45)

TABLE III
GLOBAL AcC.(%) AND ROBUST AccC.(%) OF ROBUST FEDERATED

label: tensor(10)

LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO

FGSM [2] FFGSM [3] Square [5] 3% 128 % 108
1 25 85.1 479 49.2 56.2
1 50 85.7 54.1 54.2 60.5 nqe® ABRP(%) Global Acc.(%) Robust Acc.(%)
175 85.1 516 525 58.6 \ FGSM [2] FFGSM [3] Square [S]
25 82.8 65.2 65.3 68.7 150 71.3 422 41.7 48.4
2 50 83.1 66.7 67.9 71.0 2 50 76.5 60.7 61.6 64.5
2 75 80.7 67.4 67.9 68.1 3 50 61.6 63.7 64.5 64.1
3 25 64.9 65.0 68-45/4 25 57.6 61.7 63.2 62.4
3 50 739 71.9 723 725 *ngq: No. of clients to go through adversarial training
4 25 715 70.2 70.9 712 ® ABR: Adversarial training batch ratio
4 50 30.7 74.1 75.0 66.6

*ng4: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

No Modifications



1.2 Pixel Modification

Clean/Robust Accuracy of the Global Model

label: tensor(45)

Clean/Robust Accuracy of the Global Model
100 100
—— Clean Gobal Acc —e— Clean Gobal Acc
Robust Global Acc Robust Global Acc
* M ®
_ 60 _ 60
g g
g i
% . “
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0 o
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label: tensor(10)
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2.1 “Eye” Area Covered

label: tensor(86) ‘ label: tensor(42)

125 150 175 200 125 150 175 200



2.2 Pixel vs. Eye Covered

TABLE III
GLOBAL AccC.(%) AND ROBUST AccC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO

TABLE II 3 x 128 x 128
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED - ;
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255, no®  ABR’(%) Global Acc.(%) Robust Acc.(%)
a=10/255) FGSM [2] FFGSM [3] Square [5]
na® ABR"(%) Global Acc.(%) Robust Acc.(%) 150 71.3 42.2 4L.7 48.4
2 50 76.5 60.7 61.6 64.5
FGSM [2] FFGSM [3] Square [5] 3 50 61.6 63.7 64.5 64.1
1 25 851 479 492 562 4 25 57.6 61.7 63.2 62.4
1 50 85.7 54.1 542 60.5 *nq: No. of clients to go through adversarial training
1 75 85.1 51.6 52.5 58.6 ® ABR: Adversarial training batch ratio
2 25 82.8 65.2 65.3 68.7
2 50 83.1 66.7 67.9 71.0
TABLE 1V
2 3 80.7 674 67.9 68.1 \ GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
3 25 83.0 64.9 65.0 68.45 LEARNING (NON-IID). TWO RANDOM CLIENTS CONSIST DATA WITH "EYE
350 73.9 71.9 723 __ AN -AREA” COVERED
4 25 71.5 70.2 70.9 71.2 ne® ABRP(%) Global Acc.(%) Robust Acc.(%)
4 50 30.7 74.1 75.0 66.6 NI
FGSM [2] FFGSM [3] Square [5]
% ng4: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio é gg ;;i 2(9)2 g(l)g gzg
3 50 69.1 60.6 61.3 63.0
PA 4 25 63.8 63.1 63.5 634

No Modifications A —
2 ng4: No. of clients to go through adversarial training
> ABR: Adversarial training batch ratio




2.2 Pixel vs. Eye Covered

TABLE III
GLOBAL AccC.(%) AND ROBUST AccC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO
3 x 128 x 128
TABLE 11
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED nqe® ABRP(%) Global Acc.(%) Robust Acc.(%)
LEARNING (IID). ADVERSARIC,:I;II\({)/"g;lNED WITH FFGSM (e=8/255, FGSM [2] FFGSM [3] Square [5]
1 50 77.3 42.2 41.7 48.4
ne® ABRY(%) Global Acc.(%) Robust Acc.(%) 2 50 76.5 60.7 61.6 64.5
3 50 61.6 63.7 64.5 64.1
FGSM [2] FFGSM [3] Square [5] 4 25 576 61.7 63.2 62.4
1 25 85.1 479 49.2 56.2 .
= *nq: No. of clients to go through adversarial training
! 0 85.7 4.1 54.2 60.5 ® ABR: Adversarial training batch ratio
1 75 85.1 51.6 52.5 58.6
2 25 82.8 65.2 65.3 68.7
; 50 83.1 66.‘71 67.9 71 (1) TABLE IV
3 80.7 67. 67.9 68. GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
3 25 83.0 64.9 65.0 68.45 LEARNING (NON-IID). TWO RANDOM CLIENTS CONSIST DATA WITH "EYE
350 73.9 71.9 72.3 72.5 AREA” COVERED
4 25 71.5 70.2 70.9 71.2 ne® ABRP(%) Global Acc.(%) Robust Acc.(%)
4 50 30.7 74.1 75.0 66.6

FGSM [2] FFGSM [3] Square [5]

% ng4: No. of clients to go through adversarial training

® ABR: Adversarial training batch ratio é gg ;72 2(9)2 g(l)g gz_g
3 50 69.1 60.6 61.3 63.0
No Modifications PA 4 25 63.8 63.1 63.5 63.4

2 ng4: No. of clients to go through adversarial training
> ABR: Adversarial training batch ratio




2.2 Pixel vs. Eye Covered

TABLE 11
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255,
a=10/255)

TABLE III
GLOBAL AccC.(%) AND ROBUST AccC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO
3 x 128 x 128

ne® ABRP(%) Global Acc.(%) Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]

ne® ABRP(%) Global Acc.(%)

Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]

1 50 71.3 42.2 41.7 48.4
2 50 76.5 60.7 61.6 64.5
3 50 61.6 63.7 64.5 64.1
4 25 57.6 61.7 63.2 62.4

*nq: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

AR ]J]WW]IPRNDOND

25 85.1 47.9 49.2 56.2
50 85.7 54.1 54.2 60.5
75 85.1 51.6 52.5 58.6
25 82.8 65.2 65.3 68.7
50 83.1 66.7 67.9 71.0
75 80.7 67.4 67.9 68.1
25 64.9 65.0 68.45
50 73.9 71.9 723 72.5
25 71.5 70.2 70.9 71.2
50 30.7 74.1 75.0 66.6

% n4: No. of clients to go through adversarial training
> ABR: Adversarial training batch ratio

No Modifications

7

TABLE IV
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS CONSIST DATA WITH "EYE
AREA” COVERED

ne® ABRP(%) Global Acc.(%) Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]

1 50 73.6 39.3 40.6 473
2 50 714 60.6 61.6 64.9
3 50 69.1 60.6 61.3 63.0
4 25 63.8 63.1 63.5 63.4

? n4: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

Eye Covered




3.1 Brighthess Comparison

label: tensor(79)

75 100 125

Original

150 175

200

100

125

150

175

200

0

label: tensor(79)

25 5 75 100 125 150 175 200

Brightness Factor = 0.15

3

50

100

125

150

175

200

label: tensor(79)

|
25 50 75 100 125 150 175 200

Brightness Factor = 2.30



3.2 Brightness Modification (Dark)

TABLE II TABLE V
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255, LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS
a=10/255) MODIFIED
ne® ABR"(%) Global Acc.(%) Robust Acc.(%) no® ABR®(%) BR® GAY%) Robust Acc.(%)
FGSM [2] FFGSM [3] Square [5] FGSM [2] FFGSM [3] Square [5]
125 85.1 47.9 49.2 56.2 30 0.15 799
1 50 85.7 54.1 54.2 60.5 250 0.15 656 70.3
1 75 85.1 51.6 52.5 58.6 3 50 0.15 23.6 65.4
4 25 0.15 67.5
2 25 82.8 65.2 65.3 68.7
2 50 83.1 66.7 67.9 71.0 1 50 2.30 72.6 60.4 61.3 63.8
2 75 80.7 67.4 67.9 68.1 2 50 2.30 57.4 67.8 68.4 66.4
3 50 2.30 18.7 68.7 69.6 60.1
3 25 64.9 65.0 68.45 4 50 2.30 10.4 69.0 69.5 58.3
3 50 73.9 71.9 72.3 72.5 4 25 2.30 39.4 69.4 70.0 64.3
4 25 715 70.2 709 712 % nq: No. of clients to go through adversarial training
4 50 30.7 74.1 75.0 066.6 ® ABR: Adversarial training batch ratio
) ¢ BR: Brightness Ratio (0.15: dark / 2.30: bright)
*nq: No. of clients to go through adversarial training 4 G A: Global Accuracy

® ABR: Adversarial training batch ratio

No Modifications



3.2 Brightness Modification (Bright)

TABLE V
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (ITD). ADVERSARIALLY TRAINED WITH FFGSM (e=8/255,

Oz=lO/255) MODIFIED
ne® ABR°(%) Global Acc.(%) Robust Acc.(%) na* ABR'(%) BR® GAY%) Robust Acc.(%)
FGSM [2] FFGSM [3] Square [5] FGSM [2] FFGSM [3] Square [5] E

125 85.1 479 49.2 56.2 = 0L e 2 = CRE

150 85.7 54.1 54.2 60.5 S0 OSSN > 0 s i

75 25 1 516 525 536 350 015 236 74.1 75.2 65.4
s 015 675 72.5 73.5 72

2 |85 82.8 65.2 65.3 68.7

5> 50 83.1 66.7 67.9 710 1 50 230 726 60.4 61.3 63.8

) 75 80.7 67.4 67.9 68.1 sn e ) 50 2.30 574 67.8 68.4 66.4
350 230 187 68.7 69.6 60.1

: @ 9 b e 68'45/4 50 230 104 69.0 69.5 58.3

3 @ 73.9 71.9 723 72.5 %4 25 230 394 69.4 70.0 64.3

j 5(5) ;(1):; zg% ;(5)(9) Z)éé *n4: No. of clients to go through adversarial training

® ABR: Adversarial training batch ratio
¢ BR: Brightness Ratio (0.15: dark / 2.30: bright)
4 G A: Global Accuracy

*ng: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

No Modifications



3.3 Brightness vs. (Pixel, Eye Covered)

TABLE V
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS

TABLE III
GLOBAL AccC.(%) AND ROBUST AccC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO
3 x 128 x 128

ne® ABRP(%) Global Acc.(%) Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]
1 50 77.3 42.2 41.7 48.4
2 50 76.5 60.7 61.6 64.5
350 61.6 63.7 64.5 64.1
4 25 57.6 61.7 63.2 62.4

MODIFIED
ne® ABRY(%) BR° GAY%) Robust Acc.(%)
FGSM [2] FFGSM [3] Square [5]

1 50 0.15 79.9 57.9 59.1 63.3
2 50 0.15 65.6 0.6 : 70.3
3 50 0.15 23.6 74.1 75.2 65.4
4 25 0.15 67.5 72.5 73.5 72.5
1 50 2.30 726 60.4 61.3 63.8
2 50 2.30 574 67.8 68.4 66.4
3 50 2.30 18.7 68.7 69.6 60.1
4 50 2.30 104 69.0 69.5 58.3
4 25 2.30 39.4 69.4 70.0 64.3

*nq: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

#ng: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio

¢ BR: Brightness Ratio (0.15: dark / 2.30: bright)

4 G A: Global Accuracy

Brightness Modified

TABLE IV
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS CONSIST DATA WITH "EYE
AREA” COVERED

ne® ABRP(%) Global Acc.(%) Robust Acc.(%)

FGSM [2] FFGSM [3] Square [5]
1 50 73.6 39.3 40.6 473
2 50 714 60.6 61.6 64.9
3 50 69.1 60.6 61.3 63.0
4 25 63.8 63.1 63.5 63.4

? n4: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio




Surprisingly “ROBUST” global aggregated model

3.3 Brightness vs. (Pixel, Eye Covered) Key Points

Fluctuating Global Acc. (%)

Stable Increasing Trend in Robust Acc. (%)
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Test Images: can be considered as different “race”

4. Augmented Test Data (Dark)

TABLE VI
ROBUST FEDERATED LEARNING (NON-IID) WITH TWO RANDOM CLIENTS
TABLE V CONSIST OF "DARK” IMAGES. EVALUATED ON AUGMENTED TEST DATA
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS ne® ABR"(%) TDT® GAY (%) Robust Acc.(%)
MODIFIED
FGSM FFGSM Square
ne* ABR"(%) BR° GAY%) Robust Acc.(%) -1 50 Bright + Clean 544 570 569 615
FGSM [2] FFGSM [3] Square [5] 1 50 Bright + Dark + Clean  55.9 64.5 66.5 67.7
L |1 50 Dark + Clean 61.2 56.7 58.2 61.9
1 50 0.15 799 S 59.1 63.3
2 50 0.15 65.6 70.6 71.3 70.3 [ 2 50 Bright + Clean 36.5 71.7 72.5 63.8
3 50 0.15 23.6 74.1 75.2 65.4 2 50 Bright + Dark + Clean  57.8 65.2 66.1 69.1
4 25 0.15 67.5 72.5 73.5 72.5 - 2 50 Dark + Clean 57.2 67.2 69.7 69.7
1 50 2.30 72.6 60.4 61.3 63.8 - 3 50 Bright + Clean 70.7 72.6
2 29 B 074 ik i oo 350 Bright + Dark + Clean 68.6 703
3 50 2.30 18.7 68.7 69.6 60.1 | 3 50 Dark + Clean 72.2 72.5
4 50 2.30 104 69.0 69.5 58.3 . :
4 25 230 394 69.4 70.0 64.3 - 425 Bright + Clean 49.1 697 711 665
T — 4 25 Bright + Dark + Clean  59.1 71.5 72.0 71.2
Neic 3 ini
® ABR: Adversarial training batch ratio - 4 25 Dark + Clean 50.4 70.0 70.3 65.8
¢ BR: Brightness Ratio (0.15: dark / 2.30: bright) . . . :
4 G A: Global Accuracy ?ngq: No. of clients to go through adversarial training
® ABR: Adversarial training batch ratio
ST DT: Test Data Type
4 G A: Global Accuracy
Brightness Modified




Test Images: can be considered as different “race”

4. Augmented Test Data (Bright)

TABLE VII
ROBUST FEDERATED LEARNING (NON-IID) WITH TWO RANDOM CLIENTS
TABLE V CONSIST OF "BRIGHT” IMAGES. EVALUATED ON AUGMENTED TEST DATA
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS ne® ABR®(%) TDT® GAY(%) Robust Acc.(%)
MODIFIED
FGSM FFGSM Square
ne® ABR"(%) BR° GAY%) Robust Acc.(%) -1 50 Bright + Clean 550 581 604 608
50 Bright + Dark + Clean  47.8 66.1 66.3 64.5
FGSM [2] FFGSM[3] Square [3] 1 50 Dark + Clean 470 622 639  62.1
1 50 0.15 79.9 57.9 59.1 63.3 . . ,
2 50 0.15 65.6 70.6 71.3 70.3 2 50 ) Brlght + Clean 64.2 (‘(3.3 2(\.() (3%.(;
4 25 0.15 67.5 72.5 73.5 72.5 L2 50 Dark + Clean 56.8 66.8 67.2 68.5
1 50 2.30 72.6 60.4 61.3 63.8 -l 50 Bright + Clean 62.8 69.9 71.6 70.7
2 350 2.30 57.4 67.8 68.4 66.4 3 50 Bright + Dark + Clean  44.8 70.5 71.1 62.0
3 50 2.30 18.7 68.7 69.6 60.1 3 50 Dark + Clean 49.2 68.2 68.3 66.4
j 3(5’ %-28 %g-j gg'g ?g'g Zj-; _4 50 Bright + Clean 386 699 701 592
. - : : : -+ 50 Bright + Dark + Clean 47.4 71.2 71.9 63.9
# ng: No. of clients to go through adversarial training - 3 S0 Dark + Clean 36.1 70.2 70.5 61.8
® ABR: Adversarial training batch ratio . ] . o
° BR: Brightness Ratio (0.15: dark / 2.30: bright) ) M No. of cllent.s to g.olthrough ath.?rsarlal training
4 G A: Global Accuracy A BR: Adversarial training batch ratio
ST DT: Test Data Type
4 G A: Global Accuracy
Brightness Modified




Augmented Test Data: Bright + Dark + Clean

4. Augmented Test Data

n, = Adv. Trained Clients
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Limitations

1. Utilization of ResNet

* Instead of using SOTA face recognition models

weight layer
weight layer

Fx)+x @

F(x)

X
identity

Figure 2. Residual learning: a building block.

2. Starving Federated Data

* Limited amount of data distributed = Bias and Overfitting

=

-2

3. Single Weight Averaging Method

* Only used FedAvg for the entire experiment



Key / Novel Findings

1. STARVING FEDERATED DATA

* FLATS: more ROBUST global model against adversarial examples
* More REALISTIC experiment

2. ROBUSTNESS with DATA MODIFICATION
* Increased BOTH Global Acc.(%) and Robust Acc.(%)

*  Broaden spectrum to general CV / Face Recognition training

* Needs to be considered as COMMON PRACTICE

3. ALLEVIATE FAIRNESS ISSUE

* Augmented Test Data = considered as “race” mixed test data

e Reduce BIAS in classification
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