

Stay Home Safe with Starving Federated Data

Session TS10-B (Learning Algorithm Development, Analysis and Interpretability)

Jaechul (Harry) Roh (HKUST)

Dr. Yajun Fang (Universal Village)

Table of Content

Sections 1 & 2: Background Information

- Adversarial Attack / Defense
- FGSM / FFGSM / Square Attack
- Federated Learning
- Face Recognition

Section 3. Our Approach

- FLATS (Method 1 / Method 2)
- Adversarial Batch Ratio

Section 4. Experiments and Results

- Benign / Robust Federated Learning
- Data Manipulation

Section 5 & 6: Summary and Evaluation

• Limitations / Novel Findings

IEEE 6th International Conference on Universal Village · UV2022 · Session TS7-A

Stay Home Safe with Starving Federated Data

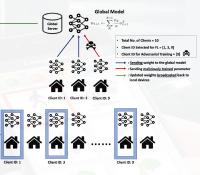
Jaechul Roh Dept. of Electronic and Computer Engineering HKUST Hong Kong, Hong Kong jroh@connect.ust.hk Yajun Fang* Universal Village Society 1 Broadway, Cambridge, MA, 02142 yjfang@mit.edu

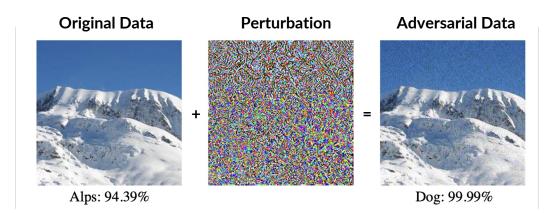
Abstract—Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment. Our code can be found on https://github.com/jcroh0508/FLATS.

Index Terms-adversarial attack, robustness, federated learning, smart home, face recognition

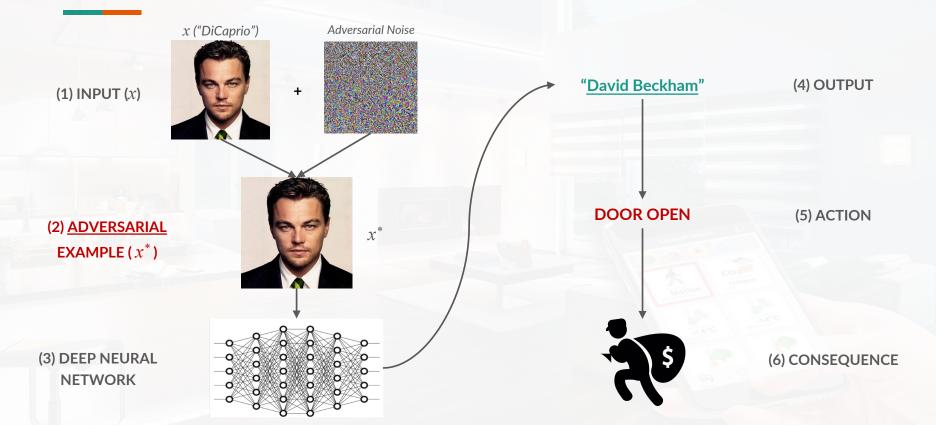
I. INTRODUCTION

The introduction of Deep Neural Networks (DNNs) to the field of machine learning grasped the attention of numerous researchers by achieving the classification ability to almost



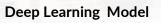

Fig. 1. General Architecture of FLATS

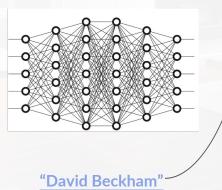
Sections 1 & 2: Background Information


Adversarial Attack

- Adversarial Examples input data with an imperceptible change
- Adversarial Examples = Original data (x) + Perturbation with noise (ϵ)
- Adversarial Attack induce misclassification in purpose to make machine learning models more ROBUST

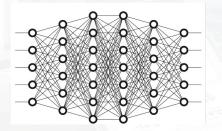
Real-Life Adversarial Attack (Smart Home)


Adversarial Defense (Training)


ATTACK (Step 1)

Adversarial Examples

DEFENSE (Step 2)

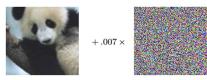

+

<u>Clean</u> Data

Adversarial Examples

"Leonardo DiCaprio"

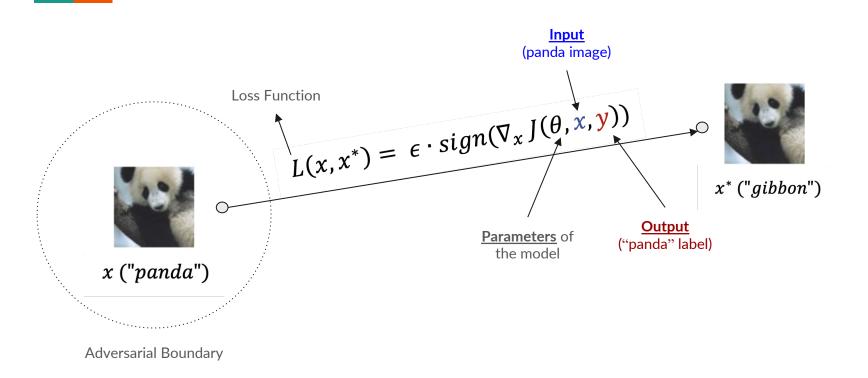
Output



Explaining and Harnessing Adversarial Examples (2015) Ian.J.Goodfellow, Jonathon Shlens & Christian Szegedy

x "panda" 57.7% confidence sign $(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

 $\begin{aligned} \epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \text{"gibbon"} \\ 99.3 \ \% \ \text{confidence} \end{aligned}$


Goodfellow et al. 2014

 $x + \epsilon \cdot sign(\nabla_x J(\theta, x, y))$ Loss Function **Loss Function Gradient**

Adversarial Example

FGSM (Cont.)

Deciding perturbation

FGSM uses the <u>"max norm constraint":</u>

(In all definitions, $x = (x_1, x_1, ..., x_n)$)

$$L^{\infty} \text{ distance: } \| x \|_{\infty} = \max_{1 \le i \le n} |x_i| \qquad L^1 \text{ distance: } \| x \|_1 = \sum_{i=1}^n |x_i|$$

 L^{∞} : moving many pixels as possible but only by a small number

 L^1 : summed absolute value difference between x and x^{*}

Adversarial Defense (FGSM)

$$\frac{\tilde{J}(\theta, x, y)}{(3)} = \alpha \cdot \frac{J(\theta, x, y)}{(1)} + (1 - \alpha) \cdot \frac{J(\theta, \tilde{x}, y)}{(2)}$$

(1) $\tilde{J}(\theta, x, y)$: loss function of the <u>original data</u>

(2) $J(\theta, \tilde{x}, y)$: loss function of the <u>adversarial example</u>

(3) $J(\theta, x, y)$: loss function of both <u>original data</u> and <u>adversarial example</u>

 \pmb{lpha} : <u>proportion</u> of applying loss between original data and adversarial example

Time (min)

Fast Adversarial Training using FGSM (FFGSM)

Efficient training techniques added to FGSM

- Cyclic learning rates
- Mixed-precision training

Method

FAST IS BETTER THAN FREE: **REVISITING ADVERSARIAL TRAINING**

Eric Wong* Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA ericwong@cs.cmu.edu J. Zico Kolter Computer Science Department	Leslie Rice* Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213, USA larice@cs.cmu.edu	+ zero init + early stopping + previous init + random init + $\alpha = 10/255$ step size + $\alpha = 16/255$ step size + early stopping	85.18% 71.14% 86.02% 85.32% 83.81% 86.05% 70.93%	0.00% 38.86% 42.37% 44.01% 46.06% 0.00% 40.38%	12.37 7.89 12.21 12.33 12.17 12.06 8.81
Carnegie Mellon University and		"Free" $(m = 8)$ (Shafahi et al., 2019)	85.96%	46.33%	785
Bosch Center for Artifical Intelligence		+ DAWNBench	78.38%	46.18%	20.91
Pittsburgh, PA 15213, USA		PGD-7 (Madry et al., 2017)	87.30%	45.80%	4965.71
zkolter@cs.cmu.edu		+ DAWNBench	82.46%	50.69%	68.8

FGSM + DAWNBench

Standard accuracy

PGD ($\epsilon = 8/255$)

Square Attack (Black-Box Attack)

Key Concept of Square Attack

- Based on randomized search scheme
- Perturbation situated at boundary of feasible set

Square Attack: a query-efficient black-box adversarial attack via random search

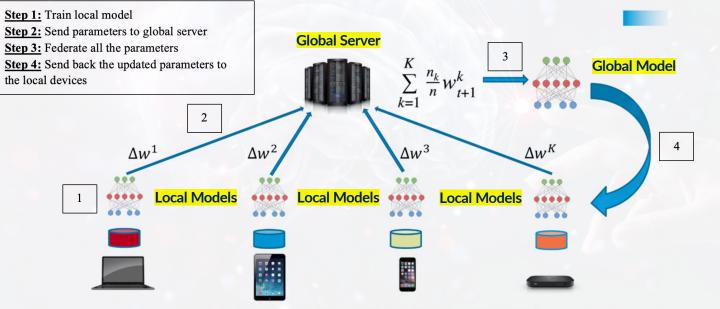
Maksym Andriushchenko^{*1}, Francesco Croce^{*2}, Nicolas Flammarion¹, and Matthias Hein²

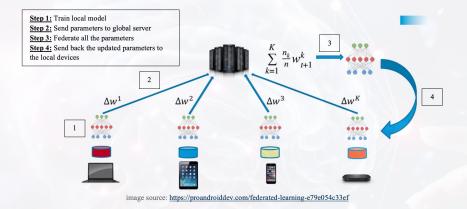
 $^{1}\,$ EPFL $^{2}\,$ University of Tübingen

Table 2. Results of untargeted attacks on ImageNet with a limit of 10,000 queries. For the l_{∞} -attack we set the norm bound $\epsilon = 0.05$ and for the l_{2} -attack $\epsilon = 5$. Models: normally trained I: Inception v3, R: ResNet-50, V: VGG-16-BN. The Square Attack outperforms for both threat models all other methods in terms of success rate and query efficiency. The missing entries correspond to the results taken from the original paper where some models were not reported

Norm	Attack	Failure rate		\mathbf{Avg}	Avg. queries		Med. queries			
		Ι	R	V	Ι	R	V	Ι	R	V
	Bandits 31	3.4%	1.4%	2.0%	957	727	394	218	136	36
	Parsimonious 49	1.5%	-	-	722	-	-	237	-	-
1	DFO_c -CMA 39	0.8%	0.0%	0.1%	630	270	219	259	143	107
l_{∞}	DFO _d -Diag. CMA 39	2.3%	1.2%	0.5%	424	417	211	20	20	2
	SignHunter 2	1.0%	0.1%	0.3%	471	129	95	95	39	43
	Square Attack	0.3%	0.0%	0.0%	197	73	31	24	11	1
	Bandits 31	9.8%	6.8%	10.2%	1486	939	511	660	392	196
l_2	SimBA-DCT 28	35.5%	12.7%	7.9%	651	582	452	564	467	360
	Square Attack	7.1%	0.7%	0.8%	1100	616	377	385	170	109

Federated Learning




image source: https://proandroiddev.com/federated-learning-e79e054c33ef

Brendan McMahan

Advantages of Federated Learning

- 1. Data Security: local models do not have to send their private data
- 2. Hardware Efficiency: training only conducted within distributed local devices

3. Data Diversity: Wider range of data utilized in each training process

Federated Averaging (FedAvg) Algorithm

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow$ (random set of m clients) for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow$ ClientUpdate (k, w_t) $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

 $w_{t+1} \leftarrow \sum_{k} \frac{n_k}{n} w_{t+1}^k$

n	Total Data Size
K	Total No. of Clients
n_k	Data Size of Client $m{k}$
w_{t+1}^k	Weight of Client k at Time Step $t{+}1$
w_{t+1}	Global Aggregated Parameter

Face Recognition

Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC

Xiang An ^{1,3} Jiankang Deng ⁺ 2.3 Jia Guo ³ Ziyong Feng ¹ XuHan Zhu ⁴ Jing Yang ³ Tongliang Liu⁵ ⁴DeepClint ²Huawei ³InsightRac ⁴Peng Cheng Laboratory ⁵University of Sydney ⁴Xiangan, ziyongfeng]édeepqLint.com, tongliang, liu@sydney.edu.au ⁴Jiankangdeng, guo Jia, zikunkan.research, y. jing2016}@gmall.com

Figure 1. PFC picks the positive center by using the label and randomly selects a significantly reduced number of negative centers to calculate partial image-to-class similarities. PFC kills two birds (efficiency and robustness) with one stone (partial sampling).

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Jiankang Deng ^{*}1.2.3</sup> Jia Guo ^{*}2</sup> Niannan Xue¹ Stefanos Zafeiriou^{1,3} ¹Imperial College London ²InsightFace ³FaceSoft {j.deng16, n.xue15, s.zafeiriou}@imperial.ac.uk, guojia@gmail.com

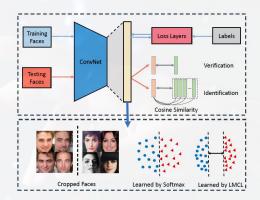
Figure 1. Based on the centre [15] and feature [35] normalisation, all identities are distributed on a hypersphere. To enhance intraclass compactness and inter-class discrepancy, we consider four kinds of Geodesic Distance (GDis) constraint. (A) Margin-Loss; insert a geodesic distance margin between the sample and centres. (B) Intra-Loss; decrease the geodesic distance between the sample and the corresponding centre. (C) Inter-Loss; increase the geodesic distance between different centres. (D) Triplet-Loss; insert a geodesic distance margin between triplet samples. In this paper, we propose an Additive Angular Margin Loss (ArcFace), which is exactly corresponded to the geodesic distance (Arc) margin penalty in (A), to enhance the discriminative power of face recognition model. Extensive experimental results show that the strategy of (A) is most effective.

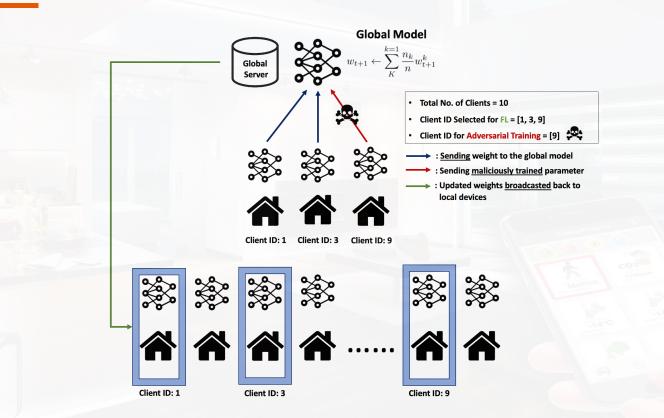
CosFace: Large Margin Cosine Loss for Deep Face Recognition

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li^{*} and Wei Liu^{*}

Tencent AI Lab

{hawelwang,yitongwang,encorezhou,denisji,sagazhou,michaelzfli}@tencent.com gongdihong@gmail.com wliu@ee.columbia.edu




Figure 1. An overview of the proposed CosFace framework. In the training phase, the discriminative face features are learned with a large margin between different classes. In the testing phase, the testing data is fed into CosFace to extract face features which are later used to compute the cosine similarity score to perform face verification and identification.

Section 3: Our Approach

<u>FLATS</u> : <u>F</u>ederated <u>L</u>earning <u>A</u>dversarial <u>T</u>raining for <u>S</u>mart Home Face Recognition System

FLATS (Method 1)

Algorithm 1 FLATS (Method I)1: N = Total global rounds2: J = Total no. of clients3: d = Total data size4: $d_j =$ Data size of client j5: n = No. of clients selected every round6: $n_a =$ No. of clients to go through adversarial training7: $w_g =$ Global model parameter8: $Clients \leftarrow [w_1, w_2, w_3, ..., w_k]$ 9: $RoundClients \leftarrow []$ 10: $AdvClients \leftarrow []$

11: for N do

(1) <u>Randomly select</u> client IDs to be trained at each global round

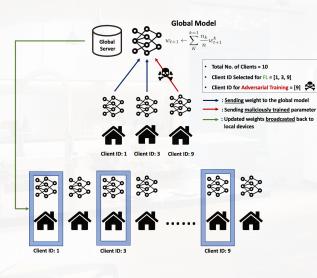
(5) FedAvg

- Save "global parameter"
- Broadcast back to local devices
- $UpdatedWeights \leftarrow []$ 12: 13: (1) $RoundClients \leftarrow Random(Clients, n)$ 14: (2) $\overline{AdvClients} \leftarrow \text{Random}(RoundClients, n_a)$ for $i \leftarrow RoundClients$ do 15: (3) if i is in AdvClients then 16: $newW \leftarrow AdvTraining(Clients[i])$ 17: $UpdatedWeights \leftarrow newW$ 18: 19: (4) else $newW \leftarrow ClientUpdate(i, Clients[i])$ 20: $UpdatedWeights \leftarrow newW$ 21: end if 22: end for 23:
- 24: (5) $w_g \leftarrow \text{FedAvg}(UpdatedWeights})$
- 25: end for

(2) Randomly select client IDs for adversarial training

(3) If the ID is in AdvClients:

Adversarial Training


(4) It not:

Standard Training

Guarantee for Adversarial Training in Each Global Round

FLATS (Method 2)

No Guarantee for <u>Adversarial Training</u> in Each Global Round

Algorithm 2 FLATS (Method II)

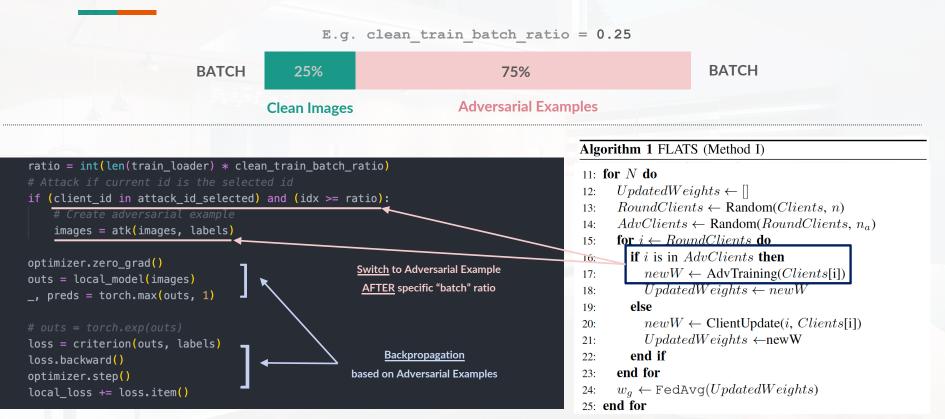
- 1: N =Total global rounds
- 2: J = Total no. of clients
- 3: d = Total data size
- 4: d_j = Data size of client j
- 5: n = No. of clients selected every round
- 6: $n_a = No.$ of clients to go through adversarial training
- 7: w_q = Global model parameter
- 8: Clients $\leftarrow [w_1, w_2, w_3, ..., w_k]$
- 9: RoundClients \leftarrow []
- 10: $AdvClients \leftarrow []$

11: $AdvClients \leftarrow Random(RoundClients, n_a)$

12: **for** *N* **do**

- 13: $UpdatedWeights \leftarrow []$
- 14: $RoundClients \leftarrow Random(Clients, n)$
- 15: for $i \leftarrow RoundClients$ do
- 16: **if** i is in AdvClients **then**
- 17: $newW \leftarrow AdvTraining(Clients[i])$
- 18: $UpdatedWeights \leftarrow newW$

19: **else**


- 20: $newW \leftarrow ClientUpdate(i, Clients[i])$
- 21: $UpdatedWeights \leftarrow newW$
- 22: end if
- 23: **end for**
- 24: $w_g \leftarrow \text{FedAvg}(UpdatedWeights)$
- 25: end for

Select client IDs for Adversarial Training

in the **BEGINNING**

Adversarial / Clean Batch Ratio

Section 4: Experiments and Results

Starving Dataset

1. Data Size

In [8]:

print("No. of All images: ", len(dataset))
print("Size of fist image: ", dataset[0][0].size())

No. of All images: 17534 Size of fist image: torch.Size([3, 224, 224])

2. Model: ResNet-34 (97.8% classification accuracy)

class FaceRecog(nn.Module):

def __init__(self, num_classes, pretrained=True):
 super(FaceRecog, self).__init__()

Pretrained resnet34

self.resnet34 = models.resnet34(pretrained=True)
for param in self.resnet34.parameters():
 param.requires_grad = False

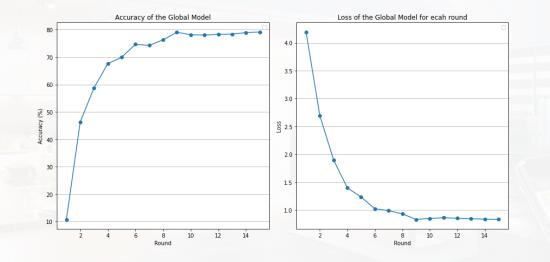
modified_fc = nn.Linear(in_features = fc_in_features, out_features=num_classes)
self.resnet34.fc = modified_fc

def forward(self, x):
 return self.resnet34(x)

def summary(self, input_size):
 return summary(self, input_size)

TOTAL Client = 5

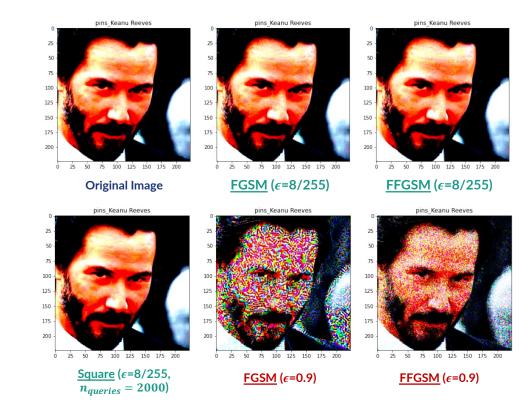
Data size for each client = around 3506 (IID)



4.1 Benign Federated Learning

Benign Federated Learning (IID)

7 total clients


5 (71%) clients selected randomly

5 epochs per client

15 global rounds

Adversarial Examples

<u>Robust Acc.</u> of <u>Benign</u> FL Model (IID)

Global	Robust	Global	Clients	Total	Selected
Acc.(%)	Acc.(%)	Rounds	Selected	Clients	Proportion (%)
81.9	N/A	7	5	5	100
82.5	6.5	10	4	5	80
79.6	6.7	10	8	10	80
73.2	4.2	10	12	15	80
78.6 76.1 61.5 2.70	N/A 5.0 3.4 2.7	10 10 10 10 10	3 4 8 10	6 8 16 20	50 50 50 50 50
71.8	4.4	10	1	5	20
48.5	3.8	10	2	10	20
40.8	2.3	10	3	15	20
34.1	2.2	10	4	20	20

 TABLE I

 GLOBAL ACC.(%) AND ROBUST ACC.(%) OF BENIGN FEDERATED

 LEARNING METHOD

<u>CATASTROPHIC</u> Robust Acc.

,.....

Adversarial Example: FGSM (ϵ = 8/255)

Benign FL Model vs. Robust FL Model (FLATS)

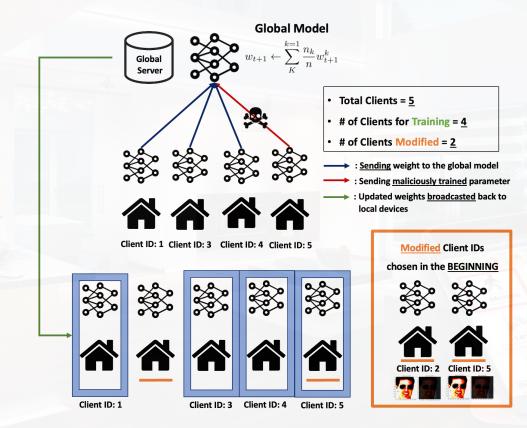
	FEDERATED		ABLE I ST ACC.(%) ING METHO	AND ROBUS	al Acc.(%)	GLOBA
)	Selected Proportion (%)	Total Clients	Clients Selected	Global Rounds	Robust Acc.(%)	Global Acc.(%)
-	100	5	5	7	N/A	81.9
•	80	5	4	10	6.5	82.5
	80	10	8	10	6.7	79.6
	80	15	12	10	4.2	73.2
Overall <u>Increa</u>	50	6	3	10	N/A	78.6
in Dobust As	50	8	4	10	5.0	76.1
in <u>Robust Ac</u>	50	16	8	10	3.4	61.5
_	50	20	10	10	2.7	2.70
	20	5	1	10	4.4	71.8
	20	10	2	10	3.8	48.5
	20	15	3	10	2.3	40.8
	20	20	4	10	2.2	34.1

TABLE II GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255, $\alpha = 10/255$)

	$n_a{}^a$	$ABR^{b}(\%)$	Global Acc.(%)	Robust Acc.(%)		
				FGSM [2]	FFGSM [3]	Square [5]
	1	25	85.1	47.9	49.2	56.2
	1	50	85.7	54.1	54.2	60.5
	1	75	85.1	51.6	52.5	58.6
<u>se</u>	2	25	82.8	65.2	65.3	68.7
	2	50	83.1	66.7	67.9	71.0
	2	75	80.7	67.4	67.9	68.1
	3	25	83.0	64.9	65.0	68.45
	3	50	73.9	71.9	72.3	72.5
	4	25	71.5	70.2	70.9	71.2
	4	50	30.7	74.1	75.0	66.6

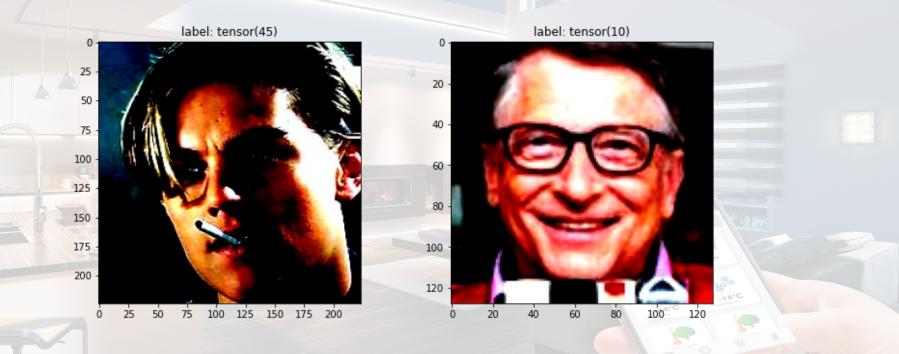
 $^{\rm a}$ n_a : No. of clients to go through adversarial training $^{\rm b}$ ABR: Adversarial training batch ratio

Adversarial Training: FFGSM (AlexNet, $\epsilon = 8/255$)

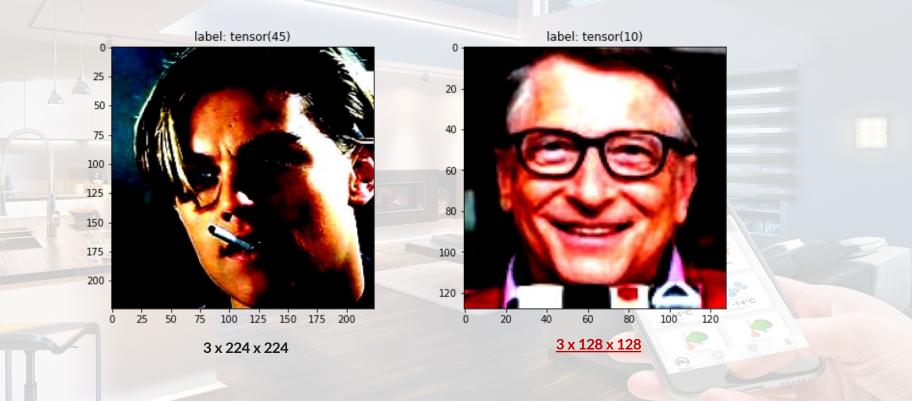


4.2 Data Manipulation (Non-IID)

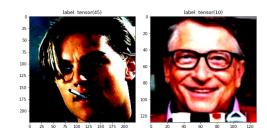
1. Pixel | 2. "Eye" Cover | 3. Brightness | 4. Test Data Augmentation



Default Setting



1.1 Pixel Comparison



1.1 Pixel Comparison

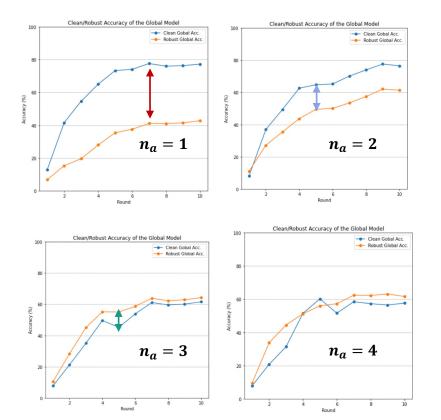
1.2 Pixel Modification

TABLE II GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255, $\alpha = 10/255)$

$n_a{}^a$	$ABR^{b}(\%)$	Global Acc.(%)]	Robust Acc.(%)
			FGSM [2]	FFGSM [3]	Square [5]
1	25	85.1	47.9	49.2	56.2
1	<mark>50</mark>	85.7	54.1	54.2	60.5
	75	85.1	51.6	52.5	58.6
2	25	82.8	65.2	65.3	68.7
2	<mark>50</mark>	83.1	66.7	<mark>67.9</mark>	71.0
2	75	80.7	67.4	67.9	68.1
3	25	83.0	64.9	65.0	68.45
3	50	73.9	71.9	72.3	72.5
4	25	71.5	70.2	70.9	71.2
4	50	30.7	74.1	75.0	66.6

TABLE III GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). Two random clients Pixel Modified to $3 \times 128 \times 128$

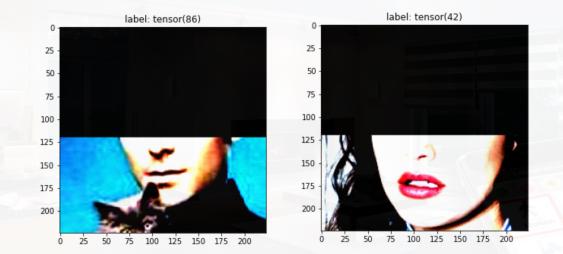
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)	Robust Acc.(%)		
			FGSM [2]	FFGSM [3]	Square [5]
\rightarrow_1	50	77.3	42.2	41.7	48.4
$\rightarrow 2$	50	76.5	60.7	61.6	64.5
-3	50	61.6	63.7	64.5	64.1
-4	25	57.6	61.7	63.2	62.4


^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

No Modifications

1.2 Pixel Modification



0 25 50 75 100 125 150 175 200

 n_a = Adv. Trained Clients

2.1 "Eye" Area Covered

Pixel

2.2 Pixel vs. Eye Covered

		(%) AND ROBUST . ADVERSARIALLY			
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)	I	Robust Acc.(%)
			FGSM [2]	FFGSM [3]	Square [5]
1	25	85.1	47.9	49.2	56.2
1	50	85.7	54.1	54.2	60.5
1	75	85.1	51.6	52.5	58.6
2	25	82.8	65.2	65.3	68.7
2	50	83.1	66.7	67.9	71.0
2	75	80.7	67.4	67.9	68.1
3	25	83.0	64.9	65.0	68.45
3	50	73.9	71.9	72.3	72.5
4	25	71.5	70.2	<mark>70.9</mark>	71.2
4	50	30.7	74.1	75.0	66.6

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

No Modifications

TABLE III GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO $3 \times 128 \times 128$

$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)	Robust Acc.(%)		
			FGSM [2]	FFGSM [3]	Square [5]
1	50	77.3	42.2	41.7	48.4
2	50	76.5	60.7	61.6	64.5
3	50	61.6	63.7	64.5	64.1
4	25	57.6	61.7	63.2	62.4

^a n_a : No. of clients to go through adversarial training

^b ABR: Adversarial training batch ratio

		(%) AND ROBUST IID). <u>Two rando</u> <u>AREA</u> "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$n_a{}^a$	$ABR^{b}(\%)$	Global Acc.(%)]	Robust Acc.(%)
			FGSM [2]	FFGSM [3]	Square [5]
1	50	73.6	39.3	40.6	47.3
. 2	50	77.4	60.6	61.6	64.9
3	50	69.1	60.6	61.3	63.0
4	25	63.8	63.1	63.5	63.4

Eye Covered

 $^{\rm a}$ n_a : No. of clients to go through adversarial training $^{\rm b}$ ABR: Adversarial training batch ratio

2.2 Pixel vs. Eye Covered

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255,
$\alpha = 10/255)$

$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)]	Robust Acc.(%)		
			FGSM [2]	FFGSM [3]	Square [5]	
	25	85.1	47.9	49.2	56.2	
	50	85.7	54.1	54.2	60.5	
	75	85.1	51.6	52.5	58.6	
	25	82.8	65.2	65.3	68.7	
2	50	83.1	66.7	67.9	71.0	
	75	80.7	67.4	67.9	68.1	
	25	83.0	64.9	65.0	68.45	
	50	73.9	71.9	72.3	72.5	
	25	71.5	70.2	70.9	71.2	
ł	50	30.7	74.1	75.0	66.6	

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

TABLE III GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). Two random clients Pixel Modified to $3 \times 128 \times 128$

$n_a{}^a$	$ABR^{\mathfrak{b}}(\%)$	Global Acc.(%)	Robust Acc.(%))
			FGSM [2]	FFGSM [3]	Square [5]
1	50	77.3	42.2	41.7	48.4
2	50	76.5	60.7	61.6	64.5
3	50	61.6	63.7	64.5	64.1
4	25	57.6	61.7	63.2	62.4

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

		(%) and Robust IID). <u>Two rando</u>	· · · · · · · · · · · · · · · · · · ·		
$n_a{}^a$	$ABR^{b}(\%)$	Global Acc.(%)	I	Robust Acc.(%)
			FGSM [2]	FFGSM [3]	Square [5]
1	50	73.6	39.3	40.6	47.3
2	50	77.4	60.6	61.6	64.9
3	50	69.1	60.6	61.3	63.0
4	25	63.8	63.1	63.5	63.4

Pixel

Eye Covered

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

2.2 Pixel vs. Eye Covered

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255,
$\alpha = 10/255)$

$n_a{}^a$	$ABR^{b}(\%)$	Global Acc.(%)	Robust Acc.(%)		
			FGSM [2]	FFGSM [3]	Square [5]
1	25	85.1	47.9	49.2	56.2
1	50	85.7	54.1	54.2	60.5
1	75	85.1	51.6	52.5	58.6
2	25	82.8	65.2	65.3	68.7
2	50	83.1	66.7	67.9	71.0
2	75	80.7	67.4	67.9	68.1
3	25	83.0	64.9	65.0	68.45
3	50	73.9	71.9	72.3	72.5
4	25	71.5	70.2	70.9	71.2
4	50	30.7	74.1	75.0	66.6

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

No Modifications

TABLE III GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). Two RANDOM CLIENTS PIXEL MODIFIED TO $3 \times 128 \times 128$

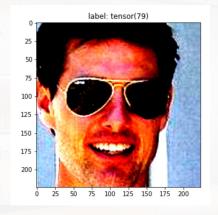
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)	Robust Acc.(%)		
			FGSM [2]	FFGSM [3]	Square [5]
_1	50	77.3	42.2	41.7	48.4
2	50	76.5	60.7	61.6	64.5
3	50	61.6	63.7	64.5	64.1
4	25	57.6	61.7	63.2	62.4

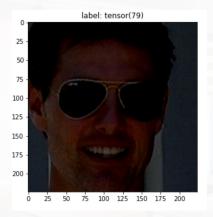
^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

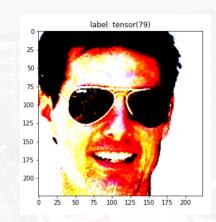
		(%) AND ROBUST IID). <u>Two rando</u>			
$n_a{}^a$	ABR ^b (%)	Global Acc.(%)]	Robust Acc.(%)
			FGSM [2]	FFGSM [3]	Square [5]
1	50	73.6	39.3	40.6	47.3
2	50	77.4	60.6	61.6	64.9
3	50	69.1	60.6	61.3	63.0
4	25	63.8	63.1	63.5	63.4

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

Pixel


Eye Covered




3.1 Brightness Comparison

Original

Brightness Factor = 0.15

Brightness Factor = 2.30

3.2 Brightness Modification (Dark)

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255,
$\alpha = 10/255)$

$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)]	Robust Acc.(%)			
			FGSM [2]	FFGSM [3]	Square [5]		
1	25	85.1	47.9	49.2	56.2		
1	50	85.7	54.1	54.2	60.5		
1	75	85.1	51.6	52.5	58.6		
2	25	82.8	65.2	65.3	68.7		
2	50	83.1	66.7	67.9	71.0		
2	75	80.7	67.4	67.9	68.1		
3	25	83.0	64.9	65.0	68.45		
3	50	73.9	71.9	72.3	72.5		
4	25	71.5	70.2	70.9	71.2		
4	50	30.7	74.1	75.0	66.6		

 $^{\rm a}$ n_a : No. of clients to go through adversarial training $^{\rm b}$ ABR: Adversarial training batch ratio

TABLE V GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS MODIFIED

$n_a{}^a$	$ABR^{\mathfrak{b}}(\%)$	BR^{c}	$GA^{d}(\%)$	Robust Acc.(%)		
				FGSM [2]	FFGSM [3]	Square [5]
1	50	0.15	79.9	57.9	59.1	63.3
2	50	0.15	65.6	70.6	71.3	70.3
3	50	0.15	23.6	74.1	75.2	65.4
4	25	0.15	67.5	72.5	73.5	72.5
1	50	2.30	72.6	60.4	61.3	63.8
2	50	2.30	57.4	67.8	68.4	66.4
3	50	2.30	18.7	68.7	69.6	60.1
4	50	2.30	10.4	69.0	69.5	58.3
4	25	2.30	39.4	69.4	70.0	64.3

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

^c BR: Brightness Ratio (0.15: dark / 2.30: bright)

^d GA: Global Accuracy

No Modifications

3.2 Brightness Modification (Bright)

TABLE II
GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED
LEARNING (IID). ADVERSARIALLY TRAINED WITH FFGSM (ϵ =8/255,
$\alpha = 10/255)$

$\overline{n_a}^a$	$ABR^{b}(\%)$	Global Acc.(%)]	Robust Acc.(%)			
			FGSM [2]	FFGSM [3]	Square [5]		
1	25	85.1	47.9	49.2	56.2		
1	50	85.7	54.1	54.2	60.5		
1	75	85.1	51.6	52.5	58.6		
2	25	82.8	65.2	65.3	68.7		
2	50	83.1	66.7	67.9	71.0		
2	75	80.7	67.4	67.9	68.1		
3	25	83.0	64.9	65.0	68.45		
3	50	73.9	71.9	72.3	72.5		
4	25	71.5	70.2	70.9	71.2		
4	50	30.7	74.1	75.0	66.6		

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

TABLE V GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS MODIFIED

$n_a{}^a$	$ABR^{b}(\%)$	BR^{c}	$GA^{d}(\%)$		Robust Acc.(%)		
				FGSM [2]	FFGSM [3]	Square [5]	
1	50	0.15	79.9	57.9	59.1	63.3	
2	50	0.15	65.6	70.6	71.3	70.3	
3	50	0.15	23.6	74.1	75.2	65.4	
4	25	0.15	67.5	72.5	73.5	72.5	
1	50	2.30	72.6	60.4	61.3	63.8	
2	50	2.30	57.4	67.8	68.4	66.4	
3	50	2.30	18.7	68.7	69.6	60.1	
4	50	2.30	10.4	69.0	69.5	58.3	
4	25	2.30	39.4	69.4	70.0	64.3	

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

^c *BR*: Brightness Ratio (0.15: dark / 2.30: bright) ^d *GA*: Global Accuracy

No Modifications

3.3 Brightness vs. (Pixel, Eye Covered)

	TABLE V GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). TWO RANDOM CLIENTS WITH BRIGHTNESS MODIFIED									
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	BR^{c}	$GA^{\rm d}(\%)$	I	Robust Acc.(%)				
				FGSM [2]	FFGSM [3]	Square [5]				
1	50	0.15	79.9	57.9	59.1	63.3				
2	50	0.15	65.6	70.6	71.3	70.3				
3	50	0.15	23.6	74.1	75.2	65.4				
4	25	0.15	67.5	72.5	73.5	72.5				
1	50	2.30	72.6	60.4	61.3	63.8				
2	50	2.30	57.4	67.8	68.4	66.4				
3	50	2.30	18.7	68.7	69.6	60.1				
4	50	2.30	10.4	69.0	69.5	58.3				
4	25	2.30	39.4	69.4	70.0	64.3				

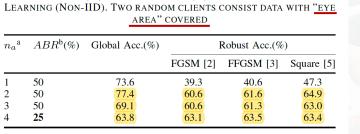
^a n_a : No. of clients to go through adversarial training

^b ABR: Adversarial training batch ratio

^c BR: Brightness Ratio (0.15: dark / 2.30: bright)

^d GA: Global Accuracy

Brightness Modified


TABLE III GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED LEARNING (NON-IID). TWO RANDOM CLIENTS PIXEL MODIFIED TO $3 \times 128 \times 128$

$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	Global Acc.(%)	Robust Acc.(%)			
			FGSM [2]	FFGSM [3]	Square [5]	
1	50	77.3	42.2	41.7	48.4	
2	50	76.5	60.7	61.6	64.5	
3	50	61.6	63.7	64.5	64.1	
4	25	57.6	61.7	63.2	62.4	

TABLE IV GLOBAL ACC.(%) AND ROBUST ACC.(%) OF ROBUST FEDERATED

^a n_a : No. of clients to go through adversarial training

^b ABR: Adversarial training batch ratio

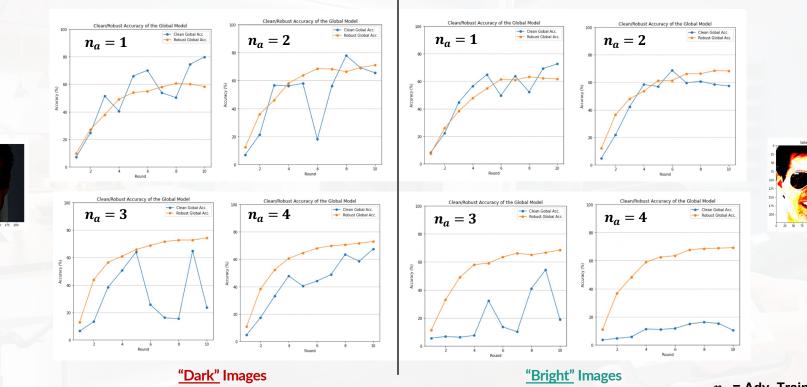
^a n_a : No. of clients to go through adversarial training

^b ABR: Adversarial training batch ratio

2

Pixel

Eye Covered



3.3 Brightness vs. (Pixel, Eye Covered)

label: tensor(79)

Key Points

<u>Fluctuating</u> Global Acc. (%) <u>Stable Increasing Trend</u> in Robust Acc. (%)

4. <u>Augmented</u> Test Data (Dark)

TABLE V Global Acc.(%) and Robust Acc.(%) of Robust Federated Learning (Non-IID). Two random clients with brightness Modified									
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	BR^{c}	$GA^{\rm d}(\%)$	J	Robust Acc.(%)			
				FGSM [2]	FFGSM [3]	Square [5]			
1	50	0.15	79.9	57.9	59.1	63.3			
2	50	0.15	65.6	70.6	71.3	70.3			
3	50	0.15	23.6	74.1	75.2	65.4			
4	25	0.15	67.5	72.5	73.5	72.5			
1	50	2.30	72.6	60.4	61.3	63.8			
2	50	2.30	57.4	67.8	68.4	66.4			
3	50	2.30	18.7	68.7	69.6	60.1			
4	50	2.30	10.4	69.0	69.5	58.3			
4	25	2.30	39.4	69.4	70.0	64.3			

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

^c BR: Brightness Ratio (0.15: dark / 2.30: bright)

^d GA: Global Accuracy

TABLE VI ROBUST FEDERATED LEARNING (NON-IID) WITH TWO RANDOM CLIENTS CONSIST OF "DARK" IMAGES. EVALUATED ON AUGMENTED TEST DATA

$n_a{}^a$	$ABR^{b}(\%)$	TDT^{c}	$GA^{\rm d}(\%)$	Ro	Robust Acc.(%	
				FGSM	FFGSM	Square
1	50	Bright + Clean	54.4	57.0	56.9	61.5
1	50	Bright + Dark + Clean	55.9	64.5	66.5	67.7
1	50	Dark + Clean	61.2	56.7	58.2	61.9
2	50	Bright + Clean	36.5	71.7	72.5	63.8
2	50	Bright + Dark + Clean	57.8	65.2	66.1	69.1
2	50	Dark + Clean	57.2	67.2	69.7	69.7
3	50	Bright + Clean	62.5	70.7	72.6	72.5
3	50	Bright + Dark + Clean	57.5	68.6	70.3	69.6
3	50	Dark + Clean	58.3	72.2	72.5	71.5
4	25	Bright + Clean	49.1	69.7	71.1	66.5
4	25	Bright + Dark + Clean	59.1	71.5	72.0	71.2
4	25	Dark + Clean	50.4	70.0	70.3	65.8

^a n_a : No. of clients to go through adversarial training

- ^b ABR: Adversarial training batch ratio
- ^c TDT: Test Data Type ^d GA: Global Accuracy

Brightness Modified

4. <u>Augmented</u> Test Data (Bright)

TABLE V Global Acc.(%) and Robust Acc.(%) of Robust Federated Learning (Non-IID). Two random clients with brightness Modified										
$n_a{}^a$	$ABR^{\mathrm{b}}(\%)$	BR^{c}	$GA^{d}(\%)$	I	Robust Acc.(%)				
				FGSM [2]	FFGSM [3]	Square [5]				
1	50	0.15	79.9	57.9	59.1	63.3				
2	50	0.15	65.6	70.6	71.3	70.3				
3	50	0.15	23.6	74.1	75.2	65.4				
4	25	0.15	67.5	72.5	73.5	72.5				
1	50	2.30	72.6	60.4	61.3	63.8				
2	50	2.30	57.4	67.8	68.4	66.4				
3	50	2.30	18.7	68.7	69.6	60.1				
4	50	2.30	10.4	69.0	69.5	58.3				
4	25	2.30	39.4	69.4	70.0	64.3				

^a n_a : No. of clients to go through adversarial training ^b ABR: Adversarial training batch ratio

^c BR: Brightness Ratio (0.15: dark / 2.30: bright)

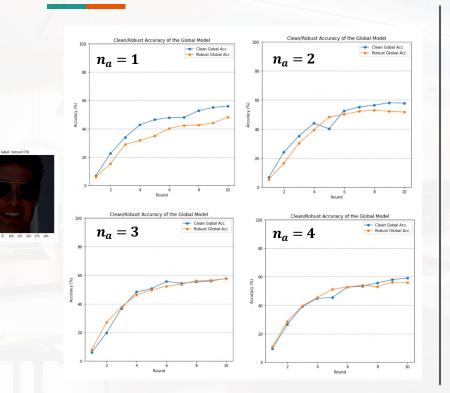
d GA: Global Accuracy

TABLE VII ROBUST FEDERATED LEARNING (NON-IID) WITH TWO RANDOM CLIENTS CONSIST OF "BRIGHT" IMAGES. EVALUATED ON AUGMENTED TEST DATA

$n_a{}^{\mathrm{a}}$	$ABR^{b}(\%)$	TDT^{c}	$GA^{\rm d}(\%)$	Robust Ac		(%)
				FGSM	FFGSM	Square
1	50	Bright + Clean	55.0	58.1	60.4	60.8
1	50	Bright + Dark + Clean	47.8	66.1	66.3	64.5
_1	50	Dark + Clean	47.0	62.2	63.9	62.1
2	50	Bright + Clean	64.2	66.3	66.9	68.6
2	50	Bright + Dark + Clean	54.3	68.4	70.3	68.2
-2	50	Dark + Clean	56.8	66.8	67.2	68.5
3	50	Bright + Clean	62.8	69.9	71.6	70.7
3	50	Bright + Dark + Clean	44.8	70.5	71.1	62.0
3	50	Dark + Clean	49.2	68.2	68.3	66.4
4	50	Bright + Clean	38.6	69.9	70.1	59.2
4	50	Bright + Dark + Clean	47.4	71.2	71.9	63.9
3	50	Dark + Clean	36.1	70.2	70.5	61.8

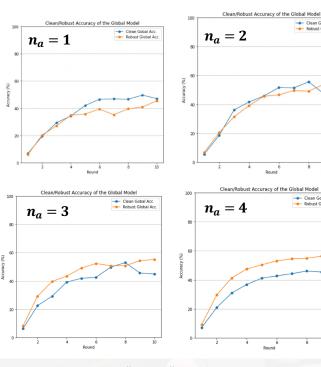
^a n_a : No. of clients to go through adversarial training

^b ABR: Adversarial training batch ratio


- ^c TDT: Test Data Type
- ^d GA: Global Accuracy

Augmented Test Data: Bright + Dark + Clean

4. <u>Augmented</u> Test Data


n_a = Adv. Trained Clients

--- Clean Gobal Acc.

- Clean Gobal Acc.

- Robust Global Acc

- Robust Global Acc

label: tensor(79

<u>"Dark"</u> Images

"Bright" Images

Section 5 & 6: Summary and Evaluation

Limitations

1. Utilization of ResNet

• Instead of using SOTA face recognition models

2. Starving Federated Data

Limited amount of data distributed → Bias and Overfitting

3. Single Weight Averaging Method

• Only used FedAvg for the entire experiment

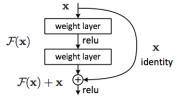
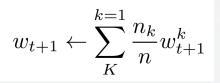
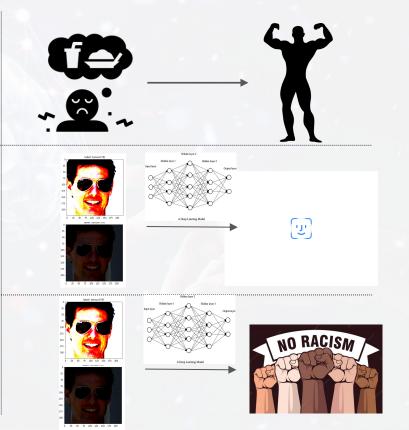



Figure 2. Residual learning: a building block.

Key / Novel Findings

1. STARVING FEDERATED DATA


- FLATS: more ROBUST global model against adversarial examples
- More **REALISTIC** experiment

2. ROBUSTNESS with DATA MODIFICATION

- Increased BOTH Global Acc.(%) and Robust Acc.(%)
- Broaden spectrum to general CV / Face Recognition training
- Needs to be considered as COMMON PRACTICE

3. ALLEVIATE FAIRNESS ISSUE

- Augmented Test Data \rightarrow considered as "race" mixed test data
- Reduce BIAS in classification

Reference

- Attack & Defense (1): Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014).
- Kariya, Mahendra. "Paper Discussion: Explaining and Harnessing Adversarial Examples." *Medium*, Medium, 16 Nov. 2018, <u>https://medium.com/@mahendrakariya/paper-discussion-explaining-and-harnessing-adversarial-examples-908a1b7123b5.
 </u>
- Dong, Yinpeng, et al. "Boosting adversarial attacks with momentum." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- 1-dimensional example: "Explaining And Harnessing Adversarial Examples 논문-리뷰." Explaining And Harnessing Adversarial Examples 논문-리뷰, 10 July 2020, velog.io/@miai0112/Explaining-And-Harnessing-Adversarial-Examples-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0.
- Pan, Zhixin, and Prabhat Mishra. "Fast Approximate Spectral Normalization for Robust Deep Neural Networks." *arXiv preprint arXiv:*2103.13815 (2021).
- Cho, Yoon Sang. "Adversarial Attacks and Defenses in Deep Learing." Adversarial Attacks and Defenses in Deep Learing, 2020, pp. 5–32, dmqm.korea.ac.kr/activity/seminar/289.

Thank You!

53